Nonconforming Box-Schemes for Elliptic Problems on Rectangular Grids
نویسنده
چکیده
Recently, Courbet and Croisille [Math. Model. Numer. Anal., 32, 631–649, 1998] introduced the FV box-scheme for the 2D Poisson problem in the case of triangular meshes. Generalization to higher degree box-schemes has been published by Croisille and Greff [Numer. Methods Partial Differential Equations, 18, 355–373, 2002]. These box-schemes are based on the idea of the finite volume method in that they take the average of the equations on each cell of the mesh. This gives rise to a natural choice of unknowns located at the interface of the mesh. Contrary to the finite volume method, these box-schemes are conservative and use only one mesh. They can be seen as a discrete mixed Petrov-Galerkin formulation of the Poisson problem. In this paper we focus our interest on box-schemes for the Poisson problem in 2D on rectangular grids. We discuss the basic FV box-scheme, and analyse and interpret it as three different box-schemes. The method is demonstrated by numerical examples.
منابع مشابه
A nonconforming covolume method for elliptic problems
We consider a control volume(covolume) method for second order elliptic PDEs with the rotated-Q1 nonconforming finite element on rectangular grids. The coefficient κ may a variable, diagonal tensor, or discontinuous. We prove first order convergence in H1 norm and second order convergence in L2 norm when the partition is square. Our numerical experiments show that our covolume scheme has about ...
متن کاملRecent Development of Multigrid Algorithms for Mixed and Nonconforming Methods for Second Order Elliptic Problems
Multigrid algorithms for nonconforming and mixed nite element methods for second order elliptic problems on triangular and rectangular nite elements are considered. The construction of several coarse-tone intergrid transfer operators for nonconforming multigrid algorithms is discussed. The equivalence between the nonconforming and mixed nite element methods with and without projection of the co...
متن کاملThe Analysis of Multigrid Algorithms for Nonconforming and Mixed Methods for Second Order Elliptic Problems
In this paper we consider multigrid algorithms for nonconforming and mixed nite element methods for second order elliptic problems on triangular and rectangular nite elements. We prove optimal convergence properties of the W-cycle multigrid algorithm and uniform condition number estimates for the variable V-cycle preconditioner. Lower order terms are treated, so our results also apply to parabo...
متن کاملA Note on the Nonconforming Finite Elements for Elliptic Problems
In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary value problems in n-dimension (m,n ≥ 1) is proposed in a canonical fashion, which includes the (2m−1)-th Hermite interpolation element (n = 1), the n-linear finite element (m = 1) and the Adini element (m = 2). A nonconforming triangular finite element for the plate bending problem, with convergent order O(h)...
متن کاملNonconforming Galerkin Methods Based on Quadrilateral Elements for Second Order Elliptic Problems
Low-order nonconforming Galerkin methods will be analyzed for second-order elliptic equations subjected to Robin, Dirichlet, or Neumann boundary conditions. Both simplicial and rectangular elements will be considered in two and three dimensions. The simplicial elements will be based on P1, as for conforming elements; however, it is necessary to introduce new elements in the rectangular case. Op...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 45 شماره
صفحات -
تاریخ انتشار 2007